Phloem

Reviewed by: BD Editors

Phloem Definition

Phloem is the complex tissue, which acts as a transport system for soluble organic compounds within vascular plants.

The phloem is made up of living tissue, which uses turgor pressure and energy in the form of ATP to actively transport sugars to the plant organs such as the fruits, flowers, buds and roots; the other material that makes up the vascular plant transport system, the xylem, moves water and minerals from the root and is formed of non-living material.

Function of Phloem

Through the system of translocation, the phloem moves photoassimilates, mainly in the form of sucrose sugars and proteins, from the leaves where they are produced by photosynthesis to the rest of the plant.

The sugars are moved from the source, usually the leaves, to the phloem through active transport. The next step, translocation of the photoassimilates, is explained by the pressure flow hypothesis.

When there is a high concentration of organic substance (in this case sugar) within the cells, an osmotic gradient is created. Water is drawn passively from the adjacent xylem over the gradient to create a sugar solution and a high turgor pressure within the phloem. The high turgor pressure causes the water and sugars to move through the tubes of the phloem, in to the ‘sink tissues’ (e.g. the roots, growing tips of stems and leaves, flowers and fruits).

When the sink receives the sugar solution, the sugars are used for growth and other processes. As the concentration of sugars reduces in the solution, the amount of water influx from the xylem also drops; this results in low pressure in the phloem at the sink. Where there are areas of high and low pressure, the photoassimilates and water are consistently moved around the plant in both directions.

Structure of Phloem

The structure of the phloem is made up of several components. Each of the components work together to facilitate the conduction of sugars and amino acids, from a source, to sink tissues where they are consumed or stored.

Phloem cells
Phloem cells

The Sieve Elements

The sieve elements are elongated, narrow cells, which are connected together to form the sieve tube structure of the phloem. The sieve element cells are the most highly specialized cell type found in plants. They are unique in that they do not contain a nucleus at maturity and are also lacking in organelles such as ribosomes, cytosol and Golgi apparatus, maximizing available space for the translocation of materials.

There are two main types of sieve element: the ‘sieve member’, which is found in angiosperms, and the more primitive ‘sieve cells’, which are associated with gymnosperms; both are derived from a common ‘mother cell’ form.

Sieve Plates

At the connections between sieve member cells are sieve plates, which are modified plasmodesmata. Sieve plates are relatively large, thin areas of pores that facilitate the exchange of materials between the element cells.

The sieve plates also act as a barrier to prevent the loss of sap when the phloem is cut or damaged, often by an insect or herbivorous animal. After injury, a unique protein called “P-protein” (Phloem-protein), which is formed within the sieve element, is released from its anchor site and accumulates to form a ‘clot’ on the pores of the sieve plate and prevent loss of sap at the damage site.

In gymnosperms, the sieve elements display more primitive features than in angiosperms, and instead of sieve plates, have numerous pores at the tapered end of the cell walls for material to pass through directly.

The Companion Cells

Each sieve element cell is usually closely associated with a ‘companion cell’ in angiosperms and an albuminous cell or ‘Strasburger cell’ in gymnosperms.

Companion cells have a nucleus, are packed with dense cytoplasm contain many ribosomes and many mitochondria. This means that the companion cells are able to undertake the metabolic reactions and other cellular functions, which the sieve element cannot perform as it lacks the appropriate organelles. The sieve elements are therefore dependent upon the companion cells for their functioning and survival.

The sieve tube and companion cells are connected via a plasmodesmata, a microscopic channel connecting the cytoplasm of the cells, which allows the transfer of the sucrose, proteins and other molecules to the sieve elements. The companion cells are thus responsible for fuelling the transport of materials around the plant and to the sink tissues, as well as facilitating the loading of sieve tubes with the products of photosynthesis, and unloading at the sink tissues. Additionally, the companion cells generate and transmit signals, such as defense signals and phytohormones, which are transported through the phloem to the sink organs.

Parenchyma

The parenchyma is a collection of cells, which makes up the ‘filler’ of plant tissues. They have thin but flexible walls made of cellulose. Within the phloem, the parenchyma’s main function is the storage of starch, fats and proteins as well tannins and resins in certain plants.

Sclerenchyma

The sclerenchyma is the main support tissue of the phloem, which provides stiffness and strength to the plant. Sclerenchyma comes in two forms: fibers and sclereids; both are characterized by a thick secondary cell wall and are usually dead upon reaching maturity.

The bast fibers, which support the tension strength while allowing flexibility of the phloem, are narrow, elongated cells with walls of thick cellulose, hemicellulose and lignin and a narrow lumen (inner cavity).

Sclereids are slightly shorter, irregularly shapes cells, which add compression strength to the phloem, although somewhat restrict flexibility. Sclereids act somewhat as a protective measure from herbivory by generating a gritty texture when chewed.

  • Xylem – One of two types of transport tissue within vascular plants, xylem is responsible for the transport of water from the roots to the leaves and shoots.
  • Photosynthesis – The process which most plants use to convert energy from the sunlight, water and carbon dioxide into oxygen and carbohydrates.
  • Photoassimilates – The biological compounds (usually energy-storing monosaccharaides) which are produced by photosynthesis.
  • ATP – Adenosine triphosphate is the high-energy molecule that transports energy for metabolism within cells.

Quiz

1. What is the main function of the phloem?
A. Transporting nutrients from a source to a sink
B. Transporting nutrients from a sink to a source
C. Transporting water from a sink to a source
D. Transporting water from a source to a sink

Answer to Question #1
A is correct. The main function of the phloem is to transport nutrients from the source where they are produced (e.g. the leaves through photosynthesis) to the sink (e.g. flowers and fruits) where they are used.

2. What service does the companion cell not provide to the sieve element?
A. Providing energy
B. Communication between cells
C. Physical rigidity
D. Unloading photoassimilates to sink tissues

Answer to Question #2
C is correct. The companion cell is important for providing energy, transferring materials and transmitting signals. The parenchyma and sclerenchyma provide strength and rigidity to a plant.

3. What does the P-protein do?
A. Increases the rate of metabolism within the companion cell
B. Builds the sieve plates
C. Forms a clot over a sieve plate when the phloem is damaged
D. Works within the phloem to transport sap

Answer to Question #3
C is correct. When the phloem is damaged, the P-protein, which is produced in the sieve element lumen, accumulates on the sieve plate to prevent loss of nutrient rich sap.

Cite This Article

MLAAPAChicago
Biologydictionary.net Editors. "Phloem." Biology Dictionary, Biologydictionary.net, 13 Feb. 2017, https://biologydictionary.net/phloem/.
Biologydictionary.net Editors. (2017, February 13). Phloem. Retrieved from https://biologydictionary.net/phloem/
Biologydictionary.net Editors. "Phloem." Biology Dictionary. Biologydictionary.net, February 13, 2017. https://biologydictionary.net/phloem/.

Subscribe to Our Newsletter